
JOURNAL OF COMPUTATJONAL PHYSICS 62, 331-339 (1986) 

Relativistic Inelastic Scattering 
Using a Logarithmic Grid 

D. F. MAYERS 

Oxford University Computing Laboratory, 
Oxford, United Kingdom 

D. M. TURNER* 

Central Electricity Research Laboratories, 
Leatherhead, Surrey, United Kingdom 

Received December 28, 1984 

This paper describes a method for solving a spherically symmetrical non-relativistic or 
relativistic inelastic scattering problem on a logarithmic grid over the whole radial distance. 
The relativistic problem involves the calculation of four coupled oscillatory wavefunctions. 
The oscillatory nature of the wavefunctions usually limits the step size of a numerical method; 
however it is shown how more slowly varying functions can be obtained enabling the 
calculation to be performed efficiently on a logarithmic grid. a 1986 Academic Press. Jnc 

1. INTRODUCTION 

Comparatively few numerical methods have been used for the solution of optical 
potential problems. The earliest method used is an extension of the WKB transfor- 
mation and avoids the numerical solution of differential equations determining the 
phase from the condition that the second derivative of the solution is zero at the 
classical turning point; details are given by Chen (1). Mizuno and Chen (2) have 
used a matrix Numerov method for the solution of the complex Schrodinger 
equation. These seem to be the only numerical methods used until Allison (3) 
produced a program for calculating non-relativistic absorption and elastic cross sec- 
tions for electron scattering from neutral atoms. This program uses a Numerov 
method to perform an outward integration of the complex Schrodinger equation 
which is matched onto an asymptotic form obtained as a linear combination of 
spherical Bessel and Neuman functions. This asymptotic series restricts the use of 
the program to scattering from neutral atoms. 

This paper describes the solution of optical potential problems on a logarithmic 
grid. The program is intended for the calculation of electron scattering from 
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positive ions. Although the complex part of the potential is only short range the 
Coulomb tail of the real part of the potential necessitates the evaluation of the 
wavefunction over large radial distances. The method previously described by 
Mayers and Turner (4) for the calculation of single channel wavefunctions using a 
logarithmic grid does not generalise in a straightforward manner to larger systems 
of equations. Thus a slightly different technique is described here which it is expec- 
ted will generalise to enable solution of the multi-channel scattering problem on a 
logarithmic grid. 

The problem is outlined in Section 2 and the method in Section 3. A pair of 
equations referred to as coupling equations are obtained and solved on a 
logarithmic grid. The solution of the coupling equations is described in Section 4; 
Section 5 describes the matching of the inward and outward solutions of the optical 
potential problem to recover the desired wavefunctions and phase shifts. The paper 
is concluded with a short discussion in Section 6. 

2. RELATIVISTIC OPTICAL POTENTIAL PROBLEM 

The relativistic optical potential problem is described by the following pair of 
complex equations 

P’(r) + k/rP(r) + f,(r) Q(r) = 0 
(1) 

where 

Q’(r) - WQ(r) - g,(r) P(r) = 0 

g,(r) = l/c(E- V,(r)) = g(r) + it?(r) 

f,(r) = g,(r) + 2c =f(r) + it+(r) 

V,(r) = V,(r) + iv=(r) 

P(r) = PI(r) + iPz(r) 

Q(r) = Q,(r) + iQz(r) 

(2) 

h(r) = -l/cV*(r) i=J-1 

Equation (1) is solved subject to the following boundary conditions 

P(0) = 0 P(r)mNSin(‘Y(r)+b) as r-+cc 

where 

Y(r) = or + q log(2wr) 

co= = 2E i- E2/c2 

~=~Z/c{((E+2c2)/E)“Z+(E/(E+2c2))”2) if V(r) -+ -Z/r 

=o if V(r) --+ 0 faster than 0( l/r). 

(3) 
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Suppose the complex phase shift is written as 4 = A + ip. Then the four components 
of the wavefunctions given by Eqs. (2) have the following asymptotic form: 

Pi(r) -+ NCosh(p) Sin( Y(r) + A) 

P2(y) -+ N Sinh(p) Co+ Y(r) -I- A) 

Ql(r, + -l/NCosh(p) Cos( Y(r) + A) 

Qz(r) + l/N Sinh(,n) Sin( Y(r) + A). 

It is often convenient to choose N = (f( cc ),/g( cc, ))‘I4 for the normalisation of the 
solutions to Eqs. (1). 

3. METHOD 

Both the relativistic and non-relativistic optical potential scattering problems 
may be written in the form of a pair of first-order complex coupled ordinary dif- 
ferential equations 

S’+a,S+a,T=O 65a) 

T’+a,T+a,S=O. (5bJ 

There is an obvious correspondence between the above equations and Eqs. (1). The 
non-relativistic problem can be obtained by choosing the above equations so that 

a,=0 

a2 = D(r) 

a3 =0 

T(r) = Y(r) 

S(r) = Y’(r) 
114) 

a4= -1. 

D(r)=2(E- V,(r))-l(l+ l)/ r2 in an obvious notation. If we add a complex 
multiple z of Eq. (5b) to Eq. (5a) we can obtain the single first-order equation 

(s!?+~T)‘+c(S+zT)=0 (7) 

provided that the two following relations hold: 

t=a,+za, 

z’+jT=a,+za,. 

Eliminating [ between Eqs. (8) gives a first-order differential equation for r, 

z’ + (al -as) z + a43 = a2. (9) 
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We calculate a smooth solution of Eq. (9) which will be referred to as the 
coupling equation. This means that the variable r is analogous to the solution of 
the amplitude equations discussed by Mayers and Turner (4) and changes less 
rapidly than the oscillatory solution S(r), T(r) we wish to calculate. The coupling 
equation (9) is solved in the asymptotic region, where r is large and the solution 
continues inwards to about the classical turning point. 

The solution to Eq. (7) is readily obtained from the complex exponential relation 

S+zT= Ne-lrdr 

N = constant. 
(10) 

In order to obtain an oscillatory solution from Eqs. (5a) and (5b), it can be seen 
that [ must have a non-trivial imaginary part. This technique may also be used 
when the complex part of the potential is zero. In this case S, T, N are real, with 
only z, [ complex, and the solution may be obtained by equating real and 
imaginary parts on either side of Eq. (10). However in the general case we must 
calculate two different smooth solutions r to Eq. (9). Equating the real and 
imaginary parts on either side of Eq. (10) for the two solutions to Eq. (9) leads to a 
4 x 4 system of equations for the four components of the complex equations (5a) 
and (5b). During the remainder of this paper the method will be illustrated using 
the relativistic equations. 

Suppose z = a - i/J, [ = 5 -t iq then for relativistic inelastic scattering equation (9) 
may be written 

cd + 2kjru - g(a2 - /S2) - 2hc@ = f 

p’ + 2k/rp + h(u2 - ,8’) - 2ga,!3 = -h 

<=k/r-gu-h/3 

ty= g/3-hha. 

(11) 

It will be convenient to denote the two solutions we calculate to Eq. (11) by 
aj, pi, j= 1, 2 which are used to calculate the functions ci, qj,j= 1, 2 defined above. 
Equations (10) yield the following fourth-order system of equations for the real and 
imaginary parts of the wavefunctions P(r), Q(r) at each radial grid point 

pt -N,e~~ilSin(jr/,+O,)- 

p2 NleeScl Cos 
0 > 

rl1+ 01 

Ql = N,eefbSin(jq2+H2) ’ (12) 

Q2 -N2di2Cos(jq2+B,) 



RELATIVISTIC INELASTIC SCATTERING 335 

The constants Ni, Bi, i = 1, 2 are determined by matching the above solutions 
onto an outward integration of the radial equations (1) close to the classical 
turning point. This is described in Section 5. 

4. SOLUTION OF THE COUPLING EQUATIONS 

In the limit r -3 co where h -+ 0 the relativistic coupling equations (11) have the 
following approximate smooth solutions 

The two smooth solutions of the coupling equations we calculate are obtained by 
starting in the asymptotic region from both the positive and negative fl solutions. In 
the region where h(r) #O approximate analytical solutions to the coupling 
equations (11) may be obtained by solving the algebraic equations remaining after 
neglecting the CI and /3 derivatives. Further details are given by Turner (5). This 
approximate solution may be used as an initial estimate for an iterative scheme for 
calculate a more accurate solution. This iterative scheme is similar to that used by 
Mayers and Turner (4) for the solution of the amplitude equations obtained from 
the relativistic scattering problem. However in this case the coupling equations have 
only quadratic non-linearities and the following asymptotic series proved to be the 
most convenient method for solving the coupling equations in the asymptotic 
region. 

We substitute the following series into Eqs. (11) 

a(r) = h, + f iqrj 
j=l 

For large values of r the potential is assumed to be 

V, = I/, + iV2 = -Z/r. 

It is then easy to obtain series expansions of CI and fl in powers of l/r? by sub- 
stituting the expansions (14) into Eq. (11) and equating powers of l/r. These series 
begin with 

kc 
a(r)= 2 I/r+ -.‘, 0 
a(r)~(l+~)“z~~(l+~)-“2~+ . ..~ 
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Successive coefficients can then easily be found from recurrence relations and for a 
given value of r the calculation stops when the terms in both series contribute less 
than a specified tolerance. 

The solution of the coupling equations obtained above in the asymptotic region 
is continued inwards towards the classical turning point using a Newton-type 
iterative scheme. This solution may be evaluated on a logarithmic grid. The trans- 
formation p = log r of the independent variable is made and the coupling equations 
solved on a grid using equal step sizes in the p variable. For first-order equations 
this transformation is particularly easy and at each point on the logarithmic grid 
the following equations are solved: 

Cl(n)'+e(,"-')a(")+e~-1)a(~)=rf(r)-rrg(r)(,("-l)2-p(n-1)2) 

-2rh(r) a /S (n-l) (n-l) 

p _ e$+‘),(n)+e~-l)~(fl)= -rh(r)+rh(v)(a(“-l)‘-B(“- I?) 

(n-1) (n-l) 
+2x(r) a P 

n = 1, 2, 3 )... . 

ej+‘)=2(k-rg(r) a(“-“-r/z(r) p(“-l)) 

e~-‘)=2(rg(r)/3(“~‘)-rh(r)cr(“-‘)). 

(16) 

The acute prime denotes differentiation with respect to p. 
Convergence of the iterative scheme in Eqs. (16) may be demonstrated by an 

analysis similar to that described in Section 4 of Mayers and Turner (4). Con- 
vergence locally is obtained over a few grid points before continuing the solution 
over the next group of grid points towards the classical turning point. The uncon- 
ditionally stable trapezoidal rule is used to continue the asymptotic series solution 
inwards. The stability of higher order methods applied to the solution of Eqs. (16) 
may be established by using standard stability theory (see, e.g., Lambert (6)). For 
potentials with short range complex parts the following approximation 

e(,“-‘)zO, ey-‘)z2rg(r) /P-l) 

was found sufficient for determining the stability of higher order difference schemes 
applied to Eqs. (16). The above approximation neglects the complex part of the 
potential and this is usually valid in the region where fourth-order methods are 
liable to become unstable. Thus the integration of the coupling equations towards 
the classical turning point proceeds in the same way as that of the amplitude 
equations previously discussed by Mayers and Turner (4). 

5. MATCHING SOLUTIONS AND PHASE DETERMINATION 

Suppose at a given point r = a close to the classical turning point the solutions 
PI(a), P2(a), &(u), Q,(u) have been obtained by outward integration of the 
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relativistic optical potential equations and S,(a), &(a), T,(a), T,(a) are the real 
and imaginary parts of the solution of Eq. (7) at the same point. Choosing the 
lower limit of integration in Eqs. (12) to be the matching point Y = a enables these 
equations to be reduced to 

1 0 @-l(Q) PI(a) S,(a) 
0 1 -PI(a) a,(a) &(a> 
1 0 da) h(a) 
0 1 -P*(a) %(a) Ii 1 

N, Sin 6, 
N, Cos fll 

T,(a) = N, Sin@, 
(17) 

T,(a) N, Cos 9, _ 
The inward and outward solutions can be joined since there exists a complex 

normalisation constant MI + i&f, such that 

PI(Q) + ia, = (Ml + iM,)(S,(a) + i&(a)) 
(21(a) + iQ,(a, = CM, + ~M~)(T,(u) + in,). 

Cl81 

It is convenient to write the normalisation constant in the form 

N, = (M’ + lw)“’ 1 2 ) Cos 6, = Ml/N,, Sin 0, = M,/N, . 

We multiply the second of Eqs. ( 18) by ~~(i(a) - ipj(a), j = 1, 2 respectively and. 
using Eqs. (17), obtain the relations 

W,(a) = N,N, Sin(Bj- 0,) j= I, 2, 

~~j(a)=N,NiCos(6j-6,) j= 1,2, 
(19) 

where 

The left-hand side of Eqs. (19) is known at the point r = u and tan( oi - 9,), 
j= 1, 2, is obtained by dividing Eqs. (19). This gives two relations for the three 
phases 0j, j= 1, 3. The third relation is obtained from consideration of the 
asymptotic form of the solution of the optical potential equations (1). Substituting 
Eqs. (4) into the left-hand side of Eqs. (12) in the asymptotic region where 
c~~(co)=O, /I,(a)= -t(f(m)/g(~~))‘/~ = kN2, j= 1, 2, gives the following relations: 
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Y(r)+I=jrh~l dr+f3, 

where rh is any point in the asymptotic region such that h(rh) is negligible. 
It can be seen from Eqs. (11) that when h(r) is negligible the two solutions of the 

coupling equations we calculate differ only in the sign of p. Thus in this region 
vi + q2 = 0 and the sum 8i + 8, is determined from the above once Y is sufficiently 
large that h(r) is negligible. The phases O,, j= 1, 3 are obtained from Eqs. (19) and 
(21). The determination of the normalisation constants N, and N2 in Eq. (20) 
above requires the evaluation of the infinite range integrals of tj, j= 1, 2. From 
Eq. (11) and the asymptotic relation a =k/rg it can be seen that provided h(r) -+ 0 
faster than 0(1/r) the infinite range integrals remain finite as r -+ co. In fact using 
the asymptotic series solution (14) the infinite range integral may be evaluated 
analytically from a sufficiently large radial distance. This is the main reason for 
using the asymptotic series solution at large radial distances instead of an iterative 
scheme similar to that previously described by Mayers and Turner (4). 

All the Nj, f3,, j= 1,3, may be eliminated between Eqs. (19) and (20) to provide 
the following expression for the absorption part of the phase shift 

(22) 

The above provides a convenient evaluation of the imaginary part of the phase 
shift. Note that when h(r)=0 then <i = l2 and thus if only the phase shift is 
required and not the wavefunctions equation (22) may be evaluated by continuing 
the integration just until h(r) becomes negligible. 

6. DISCUSSION 

Approximate solutions to the coupling equations (11) may be obtained by solv- 
ing the non-linear algebraic equations remaining after neglecting the derivatives of 
a, /I. These approximate solutions may be used to define “smoother variable” trans- 
formations as previously described by Mayers and Turner (4). However it is the 
opinion of the authors that again the smoother variable equations offer little if any 
advantage over the coupling equations themselves. 

Instead of multiplying Eq. (5b) by 7, a multiple of Eq. (5a) could equally have 
been added to Eq. (5b). This leads to an alternative pair of coupling equations 
instead of Eqs. (11). The two sets of coupling equations are apparently equivalent 
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with no significant difference in the convergence rates of the corresponding Newton 
iterations. This is not the case for the amplitude equations previously discussed by 
Mayers and Turner (4). 

The initial power series was obtained assuming the imaginary part of the poten- 
tial to be a constant near the origin. Thus for Eqs. (5a ) and (5b) the following series 
expansions are used 

SE f q+o, T= 2 Tjr”+‘). 
i=O i=O 

Si, Ti are complex coefficients obtained by equating the powers of r; y is obtained 
from the indicial equation. There is one arbitrary complex constant, say So, to be 
chosen. However the solution obtained from the initial integration depends upon 
the relative magnitude of the real and imaginary part of SO. For the inelastic scat- 

tering problem here it is appropriate to define S, to be real. In this case TO is also 
real and the wavefunctions S and Tare only complex through the introduction of a 
non-zero imaginary part to the potential. 

The logarithmic grid used in this paper enables easy integration to large radial 
distances as required for inelastic scattering from positive ions. In our program 
potentials with Coulomb and non-Coulomb real parts are handled identically but 
using different values for the coefficients in the same real asymptotic series. Chen 
and Peacher (7) describe a number of imaginary potentials which have been used 
during the testing of this program. The results obtained from the program for 
potentials with Coulomb real parts have been checked for consistency (i.e., 
changing the matching point of the inward and outward integrations), since there 
does not appear to be a readily available program for checking results. For 
the non-Coulomb complex potentials given by Chen and Peacher (7) the phase 
shifts evaluated using the method described here have been validated for a number 
of energies and angular momenta with results obtained from Allison’s (3) code. 
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